Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells

氧化锌纳米粒子诱导人神经母细胞瘤 SH-SY5Y 细胞脂氧合酶介导的细胞凋亡和坏死

阅读:5
作者:Jun-Hyung Kim, Myeong Seon Jeong, Dong-Yung Kim, Song Her, Myung-Bok Wie

Abstract

Zinc oxide nanoparticles (ZnO NPs) are known to induce oxidative stress and modulate an inflammatory process in various cell types. Although the cytotoxic effects of ZnO NPs in various cell types have been evaluated, few neurotoxic surveys on ZnO NPs as well as rescue studies have been reported. This study was designed to examine the neurotoxic ZnO NP concentration according to exposure time and dose, and the mechanisms that underlie ZnO NP-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line. A significant reduction in neuronal viability as well as distinct morphological findings resulted from application of 15 μM ZnO NPs. Apoptotic injury-as measured by annexin V and caspase 3/7 activities-was significantly elevated at 12 h and 24 h, but not 6 h, after ZnO NP exposure. However, electron microscopy revealed typical necrotic characteristics, such as swelling or loss of cell organelles and rupture of the cytosolic or nuclear membrane at 12 h and 24 h after ZnO NP exposure. In rescue studies, the lipoxygenase (LOX) inhibitor esculetin attenuated ZnO NP-induced neuronal injury. The elevation of PI3 kinase (PI3K) and p-Akt/Akt activities induced by ZnO NP was significantly decreased by esculetin or LY294002. Allopurinol, N-acetyl-l-cysteine and α-tocopherol protected ZnO NP-induced cytotoxicity. Sodium nitroprusside (SNP)-induced neurotoxicity and ZnO NP-mediated NO overproduction were ameliorated by esculetin. Esculetin reduced the production of reactive oxygen species (ROS) and the depletion of antioxidant enzymes induced by ZnO NPs. The concentration of zinc from the dissolution of ZnO NPs increased in proportion to increases in the ZnO NPs concentration. These results suggest that ZnO NPs induce apoptosis via the PI3K/Akt/caspase-3/7 pathway and necrosis by LOX-mediated ROS production elevation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。