Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses

与其他呼吸道病毒相比,上呼吸道基因表达显示对 SARS-CoV-2 的免疫反应受到抑制

阅读:5
作者:Eran Mick, Jack Kamm, Angela Oliveira Pisco, Kalani Ratnasiri, Jennifer M Babik, Gloria Castañeda, Joseph L DeRisi, Angela M Detweiler, Samantha L Hao, Kirsten N Kangelaris, G Renuka Kumar, Lucy M Li, Sabrina A Mann, Norma Neff, Priya A Prasad, Paula Hayakawa Serpa, Sachin J Shah, Natasha Spottiswoo

Abstract

SARS-CoV-2 infection is characterized by peak viral load in the upper airway prior to or at the time of symptom onset, an unusual feature that has enabled widespread transmission of the virus and precipitated a global pandemic. How SARS-CoV-2 is able to achieve high titer in the absence of symptoms remains unclear. Here, we examine the upper airway host transcriptional response in patients with COVID-19 (n = 93), other viral (n = 41) or non-viral (n = 100) acute respiratory illnesses (ARIs). Compared with other viral ARIs, COVID-19 is characterized by a pronounced interferon response but attenuated activation of other innate immune pathways, including toll-like receptor, interleukin and chemokine signaling. The IL-1 and NLRP3 inflammasome pathways are markedly less responsive to SARS-CoV-2, commensurate with a signature of diminished neutrophil and macrophage recruitment. This pattern resembles previously described distinctions between symptomatic and asymptomatic viral infections and may partly explain the propensity for pre-symptomatic transmission in COVID-19. We further use machine learning to build 27-, 10- and 3-gene classifiers that differentiate COVID-19 from other ARIs with AUROCs of 0.981, 0.954 and 0.885, respectively. Classifier performance is stable across a wide range of viral load, suggesting utility in mitigating false positive or false negative results of direct SARS-CoV-2 tests.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。