Simultaneous neutralization of TGF-β and IL-6 attenuates Staphylococcus aureus-induced arthritic inflammation through differential modulation of splenic and synovial macrophages

TGF-β 和 IL-6 同时中和可通过对脾脏和滑膜巨噬细胞进行差异调节来减轻金黄色葡萄球菌诱发的关节炎症

阅读:9
作者:Rituparna Ghosh, Rajen Dey, Ritasha Sawoo, Biswadev Bishayi

Abstract

Septic arthritis is a joint disease caused by Staphylococcus aureus. Different macrophage populations contribute in various ways to control blood-borne infections and induce inflammatory responses. Macrophage tissue-resident niche is necessary for the suppression of chronic inflammation and may contribute to the pathogenesis of septic arthritis. Thus, to obtain a resolution of the disease and restoration of synovial homeostasis, it needs the activation of macrophages that further regulate the inflammatory consequences. The aim of this study was to find out the mechanism by which neutralization of transforming growth factor-beta (TGF-β) and/or interleukin (IL)-6 after induction of septic arthritis could alter the specific macrophage responses in spleen and synovial joints via different cytokines (osteoprotegerin (OPG), osteopontin (OPN), IL-10, IL-12 and CXCL8) cross-talking, and how the response could be modulated by reactive oxygen species vs antioxidant enzyme activities. Dual neutralization of TGF-β and IL-6 is notably effective in eliciting splenic and synovial tissue-resident macrophage responses. Synovial macrophage-derived IL-10 can elicit protection against septic arthritis via regulating receptor-activated nuclear factor Kappa-B ligand (RANKL)/OPG interaction. They also reduced oxidative stress by increasing the activity of antioxidant enzymes including SOD and catalase. Histopathological analysis revealed that dual neutralization of TGF-β and IL-6 prevented bone destruction and osteoclastic activity in septic arthritis by promoting the differential functional response of the splenic and synovial macrophages. Additionally, the macrophage-derived IL-10 can elicit protection against S. aureus-induced septic arthritis via regulating RANKL/OPG interaction. Further studies on STAT3 and STAT4 are needed for the understanding of such cross-talking in resident macrophages of arthritic mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。