Network Pharmacology Combined with Transcriptional Analysis to Unveil the Biological Basis of Astaxanthin in Reducing the Oxidative Stress Induced by Diabetes Mellitus

网络药理学结合转录分析揭示虾青素减轻糖尿病引起的氧化应激的生物学基础

阅读:8
作者:Xueliang Sun, Yanbin Ji, Ayesha Tahir, Jun Kang

Conclusion

Ast functions in reducing oxidative stress in DM rats by regulating a variety of targets to form a comprehensive antioxidative network.

Methods

Ast-targeted proteins were collected from the BATMAN database, Comparative Toxicogenomics Database, and STITCH database. Putative DM-related protein targets were collected from the GeneCards database. A DM-rat model was then built with streptozotocin (STZ) combined with a high-sugar, high-fat diet for 30 days. Total cholesterol (TC), triglycerides (TGs), and insulin levels were examined using whole tail-vein blood from overnight-fasted rats. SOD, GSH, and MDA activy was detected in liver tissue (p<0.05). In addition, we used RNA-sequencing analysis to detect gene-transcription level in liver tissue of rats and GO biological process analysis to show all the log2FC≥2 genes in the Ast-fed DM rats compared with the DM group using the STRING database. Ast-intersecting targets were collected with Venn analysis. Docking analysis between Ast and targeted proteins was down with the SwissDock server. Ast targets-pathway networks were built using Cytoscape 3.7.2 software.

Purpose

Astaxanthin (Ast) has been reported to reduce oxidative stress induced by diabetes mellitus (DM). The aim of this research was to give a systematic overview of the biological basis for this process.

Results

A total of 120 Ast-targeted proteins and 13,784 DM-related targets were collected. Ast functioned in reducing TC, TG, and MDA levels, promoting SOD activity and GSH expression, and alleviating islet-cell injury in Ast-fed DM rats compared with DM control rats. Furthermore, genes involved in MAPK, TNF, AMPK, and FOXO signaling pathways were differently expressed in Ast-treated DM rats compared with DM rats. The differentially expressed genes were enriched in euchromatin, thyroid cancer, and metaphase-plate congression. Three Ast-intersecting targets - Col5A1, Nqo1, and Notch2 - were then identified. We found possible binding patterns of Ast with Nqo1 and Notch2, respectively. Ast targets-pathway networks were finally built to show a systematic overview of how Ast works in multiple pathways to reduce oxidative stress. Taken together, Ast is predicted to target Col5A1, Nqo1, and Notch2 to form a network of systemic pharmacological effects to: 1) promote insulin-releasing balance and relieve insulin resistance, 2) reduce testicular cell apoptosis, and 3) maintain normal size in marginal-zone B cells and inhibit autoimmune DM, all of which contribute to the balance of lipid metabolism and reduction of oxidative stress in DM patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。