Bionic Silk Fibroin Film Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells by Activating Focal Adhesion Kinase

仿生丝素蛋白膜通过激活粘着斑激酶促进肌腱干细胞/祖细胞的肌腱分化

阅读:8
作者:Kang Lu, Xiaodie Chen, Hong Tang, Mei Zhou, Gang He, Zhisong Lu, Kanglai Tang

Background

Tendon injuries are common musculoskeletal disorders in clinic. Due to the limited regeneration ability of tendons, tissue engineering technology is often used as an effective approach to treat tendon injuries. Silk fibroin (SF) films have excellent biological activities and physical properties, which is suitable for tendon regeneration. The present study is aimed at preparing a SF film with a bionic microstructure and investigating its biological effects.

Conclusion

SF films with a bionic microstructure may serve as a scaffold, provide biophysical cues to alter the cellular adherence arrangement and cell morphology, and enhance the tenogenic gene and protein expression in TSPCs. FAK activation plays a key role during this biological response process.

Methods

A SF film with a smooth surface or bionic microstructure was prepared. After seeding tendon stem/progenitor cells (TSPCs) on the surface, the cell morphology, the expression level of tenogenic genes and proteins, and the focal adhesion kinase (FAK) activation were measured to evaluate the biological effect of SF films.

Results

The TSPCs on SF films with a bionic microstructure exhibited a slender cell morphology, promoted the expression of tenogenic genes and proteins, such as SCX, TNC, TNMD, and COLIA1, and activated FAK. FAK inhibitors blocked the enhanced expression of tenogenic genes and proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。