Lovastatin/SN38 co-loaded liposomes amplified ICB therapeutic effect via remodeling the immunologically-cold colon tumor and synergized stimulation of cGAS-STING pathway

洛伐他汀/SN38共载脂质体通过重塑免疫冷性结肠肿瘤及协同刺激cGAS-STING通路增强ICB治疗效果

阅读:4
作者:Yi Yang, Jialong Qi, Jialin Hu, You Zhou, Jiena Zheng, Wenxia Deng, Muhammad Inam, Jiaxin Guo, Yongyi Xie, Yuan Li, Chuanshan Xu, Wei Deng, Wenjie Chen

Abstract

Current immune checkpoint blockade (ICB) immunotherapeutics have revolutionized cancer treatment. However, many cancers especially the "immunologically cold" tumors, do not respond to ICB, prompting the search for additional strategies to achieve durable responses. The cGAS-STING pathway, as an essential immune response pathway, has been demonstrated for a potent target to sensitize ICB immunotherapy. However, the low efficiency of conventional STING agonists limits their clinical application. Recent studies have shown that DNA topoisomerase I (TOPI) inhibitor chemodrug SN38 can activate the cGAS-STING pathway and induce an immune response through DNA damage, while the traditional statins medication lovastatin was found to inhibit DNA damage repair, which may in turn upregulate the damaged DNA level. Herein, we have developed a liposomal carrier co-loaded with SN38 and lovastatin (SL@Lip), which can be accumulated in tumors and efficiently released SN38 and lovastatin, addressing the problem of weak solubility of these two drugs. Importantly, lovastatin can increase DNA damage and enhance the activation of cGAS-STING pathway, coordinating with SN38 chemotherapy and exhibiting the enhanced combinational immunotherapy of PD-1 antibody by remodeling the tumor microenvironment in mouse colorectal cancer of both subcutaneous and orthotopic xenograft models. Overall, this study demonstrates that lovastatin-assisted cGAS-STING stimulation mediated by liposomal delivery system significantly strengthened both chemotherapy and immunotherapy of colorectal cancer, providing a clinically translational strategy for combinational ICB therapy in the "immunologically cold" tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。