Genome-wide gene expression analysis of chemoresistant pulmonary carcinoid cells

化疗耐药肺类癌细胞的全基因组基因表达分析

阅读:7
作者:Ulrike Olszewski, Robert Zeillinger, Klaus Geissler, Gerhard Hamilton

Conclusion

The multidrug-resistant phenotype of the UMC-11 pulmonary carcinoid cell line seems to be mediated by classical efflux pumps, drug metabolization or conjugation systems, and, possibly, modulation of apoptotic cell death by S100 proteins and topo I expression by pseudogene transcripts. Autocrine or paracrine stimulation by a host of EGF-related and neuropeptide growth factors, as well as high metastatic potency indicated by increased expression of components of aerobic glycolysis and proteolytic enzymes, may furthermore account for the failure of therapeutic interventions.

Methods

Gene expression of UMC-11 chemoresistant carcinoid cells as assessed by 32 K microarray was compared with H835 chemosensitive carcinoid cells, and the genes that were differentially expressed and expected to be related to chemoresistance were selected.

Purpose

Carcinoids are highly chemoresistant tumors associated with a dismal prognosis. This study involved a comparison of the genome-wide gene expression pattern of a chemoresistant and a chemosensitive pulmonary carcinoid cell line to reveal factors that contribute to the resistant phenotype. Materials and

Results

Drug-resistant UMC-11 cells exhibited increased expression of transcripts known to confer resistance to different cytostatics such as P-glycoprotein, multidrug resistance-associated proteins 2 and 3, effectors of the glutathione detoxification and xenobiotics degradation pathways, and ion transporters including Na+/K+-adenosine triphosphatase. In addition, enhanced transcription of several S100 proteins, capable of suppressing apoptosis, regulation of topoisomerase I (topo I) expression by antisense transcripts from TOPO1 pseudogenes, and alterations of the cytoskeleton seem to contribute to the multidrug-resistant phenotype. A multitude of epidermal growth factor (EGF)-related and neuropeptide growth factors, overexpression of proteases, and appearance of aerobic glycolytic metabolism complement the malignant phenotype of the UMC-11 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。