A self-repair history: compensatory effect of a de novo variant on the FANCA c.2778+83C>G splicing mutation

自我修复史:新生变异对FANCA c.2778+83C>G剪接突变的补偿效应

阅读:1
作者:Ilaria Persico ,Giorgia Fontana ,Michela Faleschini ,Melania Eva Zanchetta ,Daniele Ammeti ,Enrico Cappelli ,Fabio Corsolini ,Clara Mosa ,Angela Guarina ,Massimo Bogliolo ,Jordi Surrallés ,Carlo Dufour ,Piero Farruggia ,Anna Savoia ,Roberta Bottega

Abstract

Introduction: Fanconi anemia (FA) is a genome instability condition that drives somatic mosaicism in up to 25% of all patients, a phenomenon now acknowledged as a good prognostic factor. Herein, we describe the case of P1, a FA proband carrying a splicing variant, molecularly compensated by a de novo insertion. Methods and Results: Targeted next-generation sequencing on P1's peripheral blood DNA detected the known FANCA c.2778 + 83C > G intronic mutation and suggested the presence of a large deletion on the other allele, which was then assessed by MLPA and RT-PCR. To determine the c.2778 + 83C > G splicing effect, we performed a RT-PCR on P1's lymphoblastoid cell line (LCL) and on the LCL of another patient (P2) carrying the same variant. Although we confirmed the expected alternative spliced form with a partial intronic retention in P2, we detected no aberrant products in P1's sample. Sequencing of P1's LCL DNA allowed identification of the de novo c.2778 + 86insT variant, predicted to compensate 2778 + 83C > G impact. Albeit not found in P1's bone marrow (BM) DNA, c.2778 + 86insT was detected in a second P1's LCL established afterward, suggesting its occurrence at a low level in vivo. Minigene assay recapitulated the c.2778 + 83C > G effect on splicing and the compensatory role of c.2778 + 86insT in re-establishing the physiological mechanism. Accordingly, P1's LCL under mitomycin C selection preserved the FA pathway activity in terms of FANCD2 monoubiquitination and cell survival. Discussion: Our findings prove the role of c.2778 + 86insT as a second-site variant capable of rescuing c.2778 + 83C > G pathogenicity in vitro, which might contribute to a slow hematopoietic deterioration and a mild hematologic evolution. Keywords: Fanconi anemia; de novo variant; natural gene therapy; somatic mosaicism; splicing mutation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。