Pik3c3 deficiency in myeloid cells imparts partial resistance to experimental autoimmune encephalomyelitis associated with reduced IL-1β production

髓系细胞中 Pik3c3 的缺乏使实验性自身免疫性脑脊髓炎产生部分抵抗力,并伴有 IL-1β 生成减少

阅读:10
作者:Guan Yang, Wenqiang Song, Jielin Xu, J Luke Postoak, Feixiong Cheng, Jennifer Martinez, Jianhua Zhang, Lan Wu, Luc Van Kaer

Abstract

The PIK3C3/VPS34 subunit of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex plays a role in both canonical and noncanonical autophagy, key processes that control immune-cell responsiveness to a variety of stimuli. Our previous studies found that PIK3C3 is a critical regulator that controls the development, homeostasis, and function of dendritic and T cells. In this study, we investigated the role of PIK3C3 in myeloid cell biology using myeloid cell-specific Pik3c3-deficient mice. We found that Pik3c3-deficient macrophages express increased surface levels of major histocompatibility complex (MHC) class I and class II molecules. In addition, myeloid cell-specific Pik3c3 ablation in mice caused a partial impairment in the homeostatic maintenance of macrophages expressing the apoptotic cell uptake receptor TIM-4. Pik3c3 deficiency caused phenotypic changes in myeloid cells that were dependent on the early machinery (initiation/nucleation) of the classical autophagy pathway. Consequently, myeloid cell-specific Pik3c3-deficient animals showed significantly reduced severity of experimental autoimmune encephalomyelitis (EAE), a primarily CD4+ T-cell-mediated mouse model of multiple sclerosis (MS). This disease protection was associated with reduced accumulation of myelin-specific CD4+ T cells in the central nervous system and decreased myeloid cell IL-1β production. Further, administration of SAR405, a selective PIK3C3 inhibitor, delayed disease progression. Collectively, our studies establish PIK3C3 as an important regulator of macrophage functions and myeloid cell-mediated regulation of EAE. Our findings also have important implications for the development of small-molecule inhibitors of PIK3C3 as therapeutic modulators of MS and other autoimmune diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。