A Cationic Stearamide-based Solid Lipid Nanoparticle for Delivering Yamanaka Factors: Evaluation of the Transfection Efficiency

用于递送山中因子的阳离子硬脂酰胺基固体脂质纳米颗粒:转染效率评估

阅读:11
作者:Funda Alkan, Hanife Sevgi Varlı, Murat Demirbilek, Engin Kaplan, Nelisa Türkoğlu Laçin

Abstract

Induced pluripotent stem cells (IPSC) are preferred as an alternative source for regenerative medicine, disease modeling, and drug screening due to their unique properties. As seen from the previous studies in the literature, most of the vector systems to transfer reprogramming factors are viral-based and have some well-known limitations. This study aims to develop a non-viral vector system for the transfection of reprogramming factors. Cationic stearamide lipid nanoparticles (CSLN) were prepared via the solvent diffusion method. The obtained CSLNs were used for the delivery of plasmid DNA (pDNA) encoding Oct3/4, Sox2, Klf4, and GFP to fibroblast cell lines. The optimization studies, for zeta potential and particle size of the conjugate, was performed to achieve high cell viability. CSLN63 with 36.5±0.06 mV zeta potential and 173.6±13.91 nm size was used for the transfection of Fibroblast cells. The transfection efficiency was observed by following GFP expression and was found as 70 %±0.11. The expression of the Oct4, Sox2, Klf4 was determined by RT-qPCR; an increase was observed after the 12th cycle in Klf4 (Ct averages: 13,41), Sox2 (Ct averages; 12,4), Oct4 (Ct average; 13,77). The tendency of colonization was observed. The upregulation efficiency of Oct4 and SSEA-1 with CSLN and another non-viral vector designed for the transportation of Yamanaka factors developed in our lab previously were compared with flow cytometer analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。