Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects

剂量依赖性酒精引起的染色质结构改变在暴露窗口期之后仍然存在,并与胎儿酒精综合症出生缺陷相关

阅读:7
作者:Kylee J Veazey, Scott E Parnell, Rajesh C Miranda, Michael C Golding

Background

In recent years, we have come to recognize that a multitude of in utero exposures have the capacity to induce the development of congenital and metabolic defects. As most of these encounters manifest their effects beyond the window of exposure, deciphering the mechanisms of teratogenesis is incredibly difficult. For many agents, altered epigenetic programming has become suspect in transmitting the lasting signature of exposure leading to dysgenesis. However, while several chemicals can perturb chromatin structure acutely, for many agents (particularly alcohol) it remains unclear if these modifications represent transient responses to exposure or heritable lesions leading to pathology.

Conclusions

These observations suggest that the immediate and long-term impacts of alcohol exposure on chromatin structure are distinct, and hint at the existence of a possible coordinated epigenetic response to ethanol during development. Collectively, our results indicate that alcohol-induced modifications to chromatin structure persist beyond the window of exposure, and likely contribute to the development of fetal alcohol syndrome-associated congenital abnormalities.

Results

Here, we report that mice encountering an acute exposure to alcohol on gestational Day-7 exhibit significant alterations in chromatin structure (histone 3 lysine 9 dimethylation, lysine 9 acetylation, and lysine 27 trimethylation) at Day-17, and that these changes strongly correlate with the development of craniofacial and central nervous system defects. Using a neural cortical stem cell model, we find that the epigenetic changes arising as a consequence of alcohol exposure are heavily dependent on the gene under investigation, the dose of alcohol encountered, and that the signatures arising acutely differ significantly from those observed after a 4-day recovery period. Importantly, the changes observed post-recovery are consistent with those modeled in vivo, and associate with alterations in transcripts encoding multiple homeobox genes directing neurogenesis. Unexpectedly, we do not observe a correlation between alcohol-induced changes in chromatin structure and alterations in transcription. Interestingly, the majority of epigenetic changes observed occur in marks associated with repressive chromatin structure, and we identify correlative disruptions in transcripts encoding Dnmt1, Eed, Ehmt2 (G9a), EzH2, Kdm1a, Kdm4c, Setdb1, Sod3, Tet1 and Uhrf1. Conclusions: These observations suggest that the immediate and long-term impacts of alcohol exposure on chromatin structure are distinct, and hint at the existence of a possible coordinated epigenetic response to ethanol during development. Collectively, our results indicate that alcohol-induced modifications to chromatin structure persist beyond the window of exposure, and likely contribute to the development of fetal alcohol syndrome-associated congenital abnormalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。