Elevated intracranial pressure induces IL‑1β and IL‑18 overproduction via activation of the NLRP3 inflammasome in microglia of ischemic adult rats

颅内压升高通过激活缺血成年大鼠小胶质细胞中的 NLRP3 炎症小体诱导 IL-1β 和 IL-18 过量产生

阅读:5
作者:Hongguang Ding, Ya Li, Miaoyun Wen, Xinqiang Liu, Yongli Han, Hongke Zeng

Abstract

Elevated intracranial pressure (ICP) is one of the most common complications following an ischemic stroke, and has implications for the clinical and neurological outcomes. The aim of the present study was to examine whether elevated ICP may increase IL‑1β and IL‑18 secretion by activating the NOD‑like receptor protein 3 (NLRP3) inflammasome in microglia of ischemic adult rats. Sprague‑Dawley rats that underwent middle cerebral artery occlusion were used for assessment of ICP. Reactive oxygen species (ROS) production was detected, and western blotting and immunofluorescence staining were used to determine the expression levels of Caspase‑1, gasdermin D‑N domains (GSDMD‑N), IL‑1β and IL‑18 in microglial cells. ICP levels were significantly increased, which was accompanied by ROS overproduction, in the brain tissue following ischemia‑reperfusion (IR) injury in rats. Treatment with 10% hypertonic saline by intravenous injection significantly reduced the ICP and ROS levels of the rats. Furthermore, high pressure (20 mmHg) combined with oxygen‑glucose deprivation (OGD) treatment resulted in increased ROS production in BV‑2 microglial cells compared with those subjected to OGD treatment alone in vitro. Elevated pressure upregulated the expression of Caspase‑1, GSDMD‑N, IL‑18 and IL‑1β in IR‑treated or OGD‑treated microglia both in vivo and in vitro. More importantly, Caspase‑1, GSDMD‑N, IL‑18 and IL‑1β expression in microglia was significantly downregulated when elevated pressure was reduced or removed. These results suggested that elevated ICP‑induced IL‑1β and IL‑18 overproduction via activation of the NLRP3 inflammasome by ischemia‑activated microglia may augment neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。