Glycogen synthase kinase 3β transfers cytoprotective signaling through connexin 43 onto mitochondrial ATP-sensitive K+ channels

糖原合酶激酶 3β 通过连接蛋白 43 将细胞保护信号转移到线粒体 ATP 敏感的 K+ 通道

阅读:5
作者:Dennis Rottlaender, Kerstin Boengler, Martin Wolny, Astrid Schwaiger, Lukas J Motloch, Michel Ovize, Rainer Schulz, Gerd Heusch, Uta C Hoppe

Abstract

Despite compelling evidence supporting key roles for glycogen synthase kinase 3β (GSK3β), mitochondrial adenosine triphosphate-sensitive K(+) (mitoK(ATP)) channels, and mitochondrial connexin 43 (Cx43) in cytoprotection, it is not clear how these signaling modules are linked mechanistically. By patch-clamping the inner membrane of murine cardiac mitochondria, we found that inhibition of GSK3β activated mitoK(ATP). PKC activation and protein phosphatase 2a inhibition increased the open probability of mitoK(ATP) channels through GSK3β, and this GSK3β signal was mediated via mitochondrial Cx43. Moreover, (i) PKC-induced phosphorylation of mitochondrial Cx43 was reduced in GSK3β-S9A mice; (ii) Cx43 and GSK3β proteins associated in mitochondria; and (iii) SB216763-mediated reduction of infarct size was abolished in Cx43 KO mice in vivo, consistent with the notion that GSK3β inhibition results in mitoK(ATP) opening via mitochondrial Cx43. We therefore directly targeted mitochondrial Cx43 by the Cx43 C-terminal binding peptide RRNYRRNY for cardioprotection, circumventing further upstream pathways. RRNYRRNY activated mitoK(ATP) channels via Cx43. We directly recorded mitochondrial Cx43 channels that were activated by RRNYRRNY and blocked by the Cx43 mimetic peptide (43)GAP27. RRNYRRNY rendered isolated cardiomyocytes in vitro and the heart in vivo resistant to ischemia/reperfusion injury, indicating that mitochondrial Cx43- and/or mitoK(ATP)-mediated reduction of infarct size was not undermined by RRNYRRNY-related opening of sarcolemmal Cx43 channels. Our results demonstrate that GSK3β transfers cytoprotective signaling through mitochondrial Cx43 onto mitoK(ATP) channels and that Cx43 functions as a channel in mitochondria, being an attractive target for drug treatment against cardiomyocyte injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。