Hyperglycemia regulates cardiac K+ channels via O-GlcNAc-CaMKII and NOX2-ROS-PKC pathways

高血糖通过 O-GlcNAc-CaMKII 和 NOX2-ROS-PKC 通路调节心脏 K+ 通道

阅读:10
作者:Bence Hegyi, Johanna M Borst, Logan R J Bailey, Erin Y Shen, Austen J Lucena, Manuel F Navedo, Julie Bossuyt, Donald M Bers

Abstract

Chronic hyperglycemia and diabetes lead to impaired cardiac repolarization, K+ channel remodeling and increased arrhythmia risk. However, the exact signaling mechanism by which diabetic hyperglycemia regulates cardiac K+ channels remains elusive. Here, we show that acute hyperglycemia increases inward rectifier K+ current (IK1), but reduces the amplitude and inactivation recovery time of the transient outward K+ current (Ito) in mouse, rat, and rabbit myocytes. These changes were all critically dependent on intracellular O-GlcNAcylation. Additionally, IK1 amplitude and Ito recovery effects (but not Ito amplitude) were prevented by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor autocamtide-2-related inhibitory peptide, CaMKIIδ-knockout, and O-GlcNAc-resistant CaMKIIδ-S280A knock-in. Ito reduction was prevented by inhibition of protein kinase C (PKC) and NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). In mouse models of chronic diabetes (streptozotocin, db/db, and high-fat diet), heart failure, and CaMKIIδ overexpression, both Ito and IK1 were reduced in line with the downregulated K+ channel expression. However, IK1 downregulation in diabetes was markedly attenuated in CaMKIIδ-S280A. We conclude that acute hyperglycemia enhances IK1 and Ito recovery via CaMKIIδ-S280 O-GlcNAcylation, but reduces Ito amplitude via a NOX2-ROS-PKC pathway. Moreover, chronic hyperglycemia during diabetes and CaMKII activation downregulate K+ channel expression and function, which may further increase arrhythmia susceptibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。