Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion

急性注射黄连木精油对短暂性双侧颈总动脉闭塞大鼠大脑皮质的影响

阅读:5
作者:Marina Quartu, Maria P Serra, Marianna Boi, Giuliano Pillolla, Tiziana Melis, Laura Poddighe, Marina Del Fiacco, Danilo Falconieri, Gianfranca Carta, Elisabetta Murru, Lina Cordeddu, Antonio Piras, Maria Collu, Sebastiano Banni

Background

Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs) and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O.), a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB) congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO) in the rat frontal cortex and plasma.

Conclusions

Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR) alpha activation, protecting brain tissue from ischemia/reperfusion injury.

Methods

Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R). 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle) or with the vehicle alone.

Results

BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA), the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2), as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA), and levels of palmytoylethanolamide (PEA) and oleoylethanolamide (OEA). Conclusions: Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR) alpha activation, protecting brain tissue from ischemia/reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。