Synthesis and pharmacological characterization of ethylenediamine synthetic opioids in human μ-opiate receptor 1 (OPRM1) expressing cells

乙二胺合成阿片类药物在人类 μ-阿片受体 1 (OPRM1) 表达细胞中的合成和药理学表征

阅读:6
作者:Tom Hsu, Jayapal R Mallareddy, Kayla Yoshida, Vincent Bustamante, Tim Lee, John L Krstenansky, Alexander C Zambon

Abstract

Opioids are powerful analgesics acting via the human μ-opiate receptor (hMOR). Opioid use is associated with adverse effects such as tolerance, addiction, respiratory depression, and constipation. Two synthetic opioids, AH-7921 and U-47700 that were developed in the 1970s but never marketed, have recently appeared on the illegal drug market and in forensic toxicology reports. These agents were initially characterized for their analgesic activity in rodents; however, their pharmacology at hMOR has not been delineated. Thus, we synthesized over 50 chemical analogs based on core AH-7921 and U-47700 structures to assess for their ability to couple to Gαi signaling and induce hMOR internalization. For both the AH-7921 and U-47700 analogs, the 3,4-dichlorobenzoyl substituents were the most potent with comparable EC50 values for inhibition of cAMP accumulation; 26.49 ± 11.2 nmol L-1 and 8.8 ± 4.9 nmol L-1, respectively. Despite similar potencies for Gαi coupling, these two compounds had strikingly different hMOR internalization efficacies: U-47700 (10 μmol L-1) induced ~25% hMOR internalization similar to DAMGO while AH-7921 (10 μmol L-1) induced ~5% hMOR internalization similar to morphine. In addition, the R, R enantiomer of U-47700 is significantly more potent than the S, S enantiomer at hMOR. In conclusion, these data suggest that U-47700 and AH-7921 analogs have high analgesic potential in humans, but with divergent receptor internalization profiles, suggesting that they may exhibit differences in clinical utility or abuse potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。