Activation of apoptotic pathways in the absence of cell death in an inner-ear immortomouse cell line

内耳永生小鼠细胞系中在没有细胞死亡的情况下激活凋亡途径

阅读:4
作者:Fu-Quan Chen, Kayla Hill, Ya-Jun Guan, Jochen Schacht, Su-Hua Sha

Abstract

Aminoglycoside antibiotics and cisplatin (CDDP) are the major ototoxins of clinical medicine due to their capacity to cause significant and permanent hearing loss by targeting the mammalian sensory cells. Understanding the pathogenesis of damage is the first step in designing effective prevention of drug-induced hearing loss. In-vitro systems greatly enhance the efficiency of biochemical and molecular investigations through ease of access and manipulation. HEI-OC1, an inner ear cell line derived from the immortomouse, expresses markers for auditory sensory cells and, therefore, is a potential tool to study the ototoxic mechanisms of drugs like aminoglycoside antibiotics and CDDP. HEI-OC1 cells (and also HeLa cells) efficiently take up fluorescently tagged gentamicin and respond to drug treatment with changes in cell death and survival signaling pathways. Within hours, the c-Jun N-terminal kinase pathway and the transcription factor AP-1 were activated and at later times, the "executioner caspase", caspase-3. These responses were robust and elicited by both gentamicin and kanamycin. However, despite the initiation of apoptotic pathways and transient changes in nuclear morphology, cell death was not observed following aminoglycoside treatment, while administration of CDDP led to significant cell death as determined by flow cytometric measurements; β-galactosidase analysis ruled out senescence in gentamicin-treated cells. The ability to withstand treatment with aminoglycosides but not with CDDP suggests that this cell line might be helpful in providing some insight into the differential actions of the two ototoxic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。