Transient receptor potential melastatin 2 ion channel activity in ovarian hyperstimulation syndrome physiopathology

卵巢过度刺激综合征病理生理中瞬时受体电位美拉司他汀 2 离子通道活性

阅读:5
作者:Cengiz Şanlı, Remzi Atılgan, Tuncay Kuloğlu, Şehmus Pala, Bilge Aydın Türk, Hasan Burak Keser, Nevin İlhan

Aim

Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with increased vascular endothelial growth factor (VEGF) and vascular permeability in the ovarian tissue. Transient receptor potential melastatin 2 (TRPM2) is known to be associated with angiogenesis and vascular permeability. In this experimental study, we aimed to investigate the activity of TRPM2 in the development of OHSS. Materials and

Conclusion

As a result of our experiment, it was found that increased TRPM2 immunoreactivity on hyperstimulated rat ovary may be the reason or result of edema and congestion. Further studies are needed to discuss our results.

Methods

Fourteen immature female rats were divided into two groups. Group 1 was the control group, and Group 2 was the OHSS group that was exposed to 10 IU of subcutaneous application of FSH for four days and 30 IU of human chorionic gonadotropin (hCG) on the 5th day. At the end of the experiment, the ovaries were removed. The right ovarian tissues were stored in 10% formol for histopathological and immunohistochemical examination. The left ovarian tissues were stored at –80 °C for biochemical examinations. VEGF, tumor necrosis factor-alpha (TNF‐α) and malondialdehyde (MDA) levels were measured in the ovarian tissue. Congestion, edema, apoptosis and TRPM2 immunoreactivity were evaluated.

Results

There was a significant increase in ovarian weight in the OHSS group compared to the control group. There was a significant increase in congestion, edema, apoptosis and TRPM2 immunoreactivity in the OHSS group. A significant increase in tissue levels of VEGF, TNF‐α and MDA was also found in the OHSS group compared to the control group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。