Tudor-SN and ADAR1 are components of cytoplasmic stress granules

Tudor-SN 和 ADAR1 是细胞质应激颗粒的组成部分

阅读:4
作者:Rebekka Weissbach, A D J Scadden

Abstract

Hyperediting by adenosine deaminases that acts on RNA (ADARs) may result in numerous Adenosine-to-Inosine (A-to-I) substitutions within long dsRNA. However, while countless RNAs may undergo hyperediting, the role for inosine-containing hyperedited dsRNA (IU-dsRNA) in cells is poorly understood. We have previously shown that IU-dsRNA binds specifically to various components of cytoplasmic stress granules, as well as to other proteins such as Tudor Staphylococcal Nuclease (Tudor-SN). Tudor-SN has been implicated in diverse roles in mammalian cells, including transcription, splicing, RNAi, and degradation. Moreover, we have shown that Tudor-SN interacts directly with stress granule proteins. Here we show that Tudor-SN localizes to cytoplasmic stress granules in HeLa cells undergoing arsenite-induced oxidative stress, or following transfection with long dsRNA (poly[IC]), which initiates an interferon cascade. We additionally demonstrate a novel interaction between Tudor-SN and ADAR1. Finally, we show that ADAR1 is also localized to stress granules in HeLa cells following various stresses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。