Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice

结合新一代测序和单分子测序探索褐飞虱对不同基因型粳稻的反应

阅读:4
作者:Jing Zhang, Wei Guan, Chaomei Huang, Yinxia Hu, Yu Chen, Jianping Guo, Cong Zhou, Rongzhi Chen, Bo Du, Lili Zhu, Danax Huanhan, Guangcun He

Background

The brown plant hopper (BPH), Nilaparvata lugens, is one of the major pest of rice (Oryza sativa). Plant defenses against insect herbivores have been extensively studied, but our understanding of insect responses to host plants' resistance mechanisms is still limited. The

Conclusions

The current study provides the first demonstrations of the full diversity and complexity of the BPH transcriptome, and indicates that BPH responses to rice resistance, might be related to starvation stress responses, nutrient transformation, oxidative decomposition, and detoxification. The current result findings will facilitate further exploration of molecular mechanisms of interaction between BPH insects and host rice.

Results

The current study obtained 24,891 collapsed isoforms of full-length transcripts, and 20,662 were mapped to known annotated genes, including 17,175 novel transcripts. The current study also identified 915 fusion genes, 1794 novel genes, 2435 long non-coding RNAs (lncRNAs), and 20,356 alternative splicing events. Moreover, analysis of differentially expressed genes (DEGs) revealed that genes involved in metabolic and cell proliferation processes were significantly enriched in up-regulated and down-regulated sets, respectively, in BPH fed on resistant rice relative to BPH fed on susceptible wild type rice. Furthermore, the FoxO signaling pathway was involved and genes related to BPH starvation response (Nlbmm), apoptosis and autophagy (caspase 8, ATG13, BNIP3 and IAP), active oxygen elimination (catalase, MSR, ferritin) and detoxification (GST, CarE) were up-regulated in BPH responses to resistant rice. Conclusions: The current study provides the first demonstrations of the full diversity and complexity of the BPH transcriptome, and indicates that BPH responses to rice resistance, might be related to starvation stress responses, nutrient transformation, oxidative decomposition, and detoxification. The current result findings will facilitate further exploration of molecular mechanisms of interaction between BPH insects and host rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。