Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage

聚丙烯纳米塑料暴露通过线粒体损伤通过 p38 介导的 NF-κB 通路导致肺部炎症

阅读:5
作者:Jong-Hwan Woo, Hyeon Jin Seo, Jun-Young Lee, Iljung Lee, Kisoo Jeon, Bumseok Kim, Kyuhong Lee

Background

Polypropylene (PP) is used in various products such as disposable containers, spoons, and automobile parts. The disposable masks used for COVID-19 prevention mainly comprise PP, and the disposal of such masks is concerning because of the potential environmental pollution. Recent reports have suggested that weathered PP microparticles can be inhaled, however, the inhalation toxicology of PP microparticles is poorly understood.

Conclusions

These results suggest that PP stimulation may contribute to inflammation pathogenesis via the p38 phosphorylation-mediated NF-κB pathway as a result of mitochondrial damage.

Results

Inflammatory cell numbers, reactive oxygen species (ROS) production, and the levels of inflammatory cytokines and chemokines in PP-instilled mice (2.5 or 5 mg/kg) increased significantly compared to with those in the control. Histopathological analysis of the lung tissue of PP-stimulated mice revealed lung injuries, including the infiltration of inflammatory cells into the perivascular/parenchymal space, alveolar epithelial hyperplasia, and foamy macrophage aggregates. The in vitro study indicated that PP stimulation causes mitochondrial dysfunction including mitochondrial depolarization and decreased adenosine triphosphate (ATP) levels. PP stimulation led to cytotoxicity, ROS production, increase of inflammatory cytokines, and cell deaths in A549 cells. The results showed that PP stimulation increased the p-p38 and p-NF-κB protein levels both in vivo and in vitro, while p-ERK and p-JNK remained unchanged. Interestingly, the cytotoxicity that was induced by PP exposure was regulated by p38 and ROS inhibition in A549 cells. Conclusions: These results suggest that PP stimulation may contribute to inflammation pathogenesis via the p38 phosphorylation-mediated NF-κB pathway as a result of mitochondrial damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。