NPC1 Confers Metabolic Flexibility in Triple Negative Breast Cancer

NPC1 赋予三阴性乳腺癌代谢灵活性

阅读:5
作者:Kathleen I O'Neill, Li-Wei Kuo, Michelle M Williams, Hanne Lind, Lyndsey S Crump, Nia G Hammond, Nicole S Spoelstra, M Cecilia Caino, Jennifer K Richer

Abstract

Triple-negative breast cancer (TNBC) often undergoes at least partial epithelial-to-mesenchymal transition (EMT) to facilitate metastasis. Identifying EMT-associated characteristics can reveal novel dependencies that may serve as therapeutic vulnerabilities in this aggressive breast cancer subtype. We found that NPC1, which encodes the lysosomal cholesterol transporter Niemann-Pick type C1 is highly expressed in TNBC as compared to estrogen receptor-positive (ER+) breast cancer, and is significantly elevated in high-grade disease. We demonstrated that NPC1 is directly targeted by microRNA-200c (miR-200c), a potent suppressor of EMT, providing a mechanism for its differential expression in breast cancer subtypes. The silencing of NPC1 in TNBC causes an accumulation of cholesterol-filled lysosomes, and drives decreased growth in soft agar and invasive capacity. Conversely, overexpression of NPC1 in an ER+ cell line increases invasion and growth in soft agar. We further identified TNBC cell lines as cholesterol auxotrophs, however, they do not solely depend on NPC1 for adequate cholesterol supply. The silencing of NPC1 in TNBC cell lines led to altered mitochondrial function and morphology, suppression of mTOR signaling, and accumulation of autophagosomes. A small molecule inhibitor of NPC1, U18666A, decreased TNBC proliferation and synergized with the chemotherapeutic drug, paclitaxel. This work suggests that NPC1 promotes aggressive characteristics in TNBC, and identifies NPC1 as a potential therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。