SerpinA3N deficiency attenuates steatosis and enhances insulin signaling in male mice

SerpinA3N 缺乏可减轻雄性小鼠的脂肪变性并增强胰岛素信号

阅读:21
作者:Melanie Tran, Golam Mostofa, Michael Picard, Jianguo Wu, Li Wang, Dong-Ju Shin

Abstract

Aberrant hepatic lipid metabolism is the major cause of non-alcoholic fatty liver disease (NAFLD) and is associated with insulin resistance and type 2 diabetes. Serine (or cysteine) peptidase inhibitor, clade A, member 3N (SerpinA3N) is highly expressed in the liver; however, its functional role in regulating NAFLD and associated metabolic disorders are not known. Male wildtype and hepatocyte Serpina3N knockout (HKO) mice were fed a control diet, methionine- and choline-deficient diet or high-fat high-sucrose diet to induce NAFLD and markers of lipid metabolism and glucose homeostasis were assessed. SerpinA3N protein was markedly induced in mice with fatty livers. Hepatic deletion of SerpinA3N attenuated steatosis which correlated with altered lipid metabolism genes, increased fatty acid oxidation activity and enhanced insulin signaling in mice with NAFLD. Additionally, SerpinA3N HKO mice had reduced epididymal white adipose tissue mass, leptin, and insulin levels, improved glucose tolerance, and enhanced insulin sensitivity which was associated with elevated insulin-like growth factor binding protein-1 (IGFBP1) and activation of the leptin receptor (LEPR)-STAT3 signaling pathway. Our findings provide a novel insight into the functional role of SerpinA3N in regulating NAFLD and glucose homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。