BiTE secretion from in situ-programmed myeloid cells results in tumor-retained pharmacology

原位编程的髓系细胞分泌 BiTE 可导致肿瘤保留药理学

阅读:5
作者:S Hao, V V Inamdar, E C Sigmund, F Zhang, S B Stephan, C Watson, S J Weaver, U B Nielsen, M T Stephan

Abstract

Bispecific T-Cell Engagers (BiTEs) are effective at inducing remission in hematologic cancers, but their use in solid tumors has been challenging due to their extreme potency and on-target, off-tumor toxicities in healthy tissue. Their deployment against solid tumors is further complicated by insufficient drug penetration, a hostile tumor microenvironment, and immune escape. To address these challenges, we developed targeted nanocarriers that can deliver in vitro-transcribed mRNA encoding BiTEs to host myeloid cells - a cell type that is actively recruited into the tumor microenvironment. We demonstrate in an immunocompetent mouse model of ovarian cancer, that infusion of these nanoparticles directs BiTE expression to tumor sites, which reshapes the microenvironment from suppressive to permissive and triggers disease regression without systemic toxicity. In contrast, conventional injections of recombinant BiTE protein at doses required to achieve anti-tumor activity, induced systemic inflammatory responses and severe tissue damage in all treated animals. Implemented in the clinic, this in situ gene therapy could enable physicians - with a single therapeutic - to safely target tumor antigen that would otherwise not be druggable due to the risks of on-target toxicity and, at the same time, reset the tumor milieu to boost key mediators of antitumor immune responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。