Modestly increasing systemic interleukin-6 perinatally disturbs secondary germinal zone neurogenesis and gliogenesis and produces sociability deficits

围产期系统性白细胞介素-6 适度增加会干扰继发性生发区神经发生和神经胶质生成,并产生社交能力缺陷

阅读:5
作者:Fernando Janczur Velloso, Anna Wadhwa, Ekta Kumari, Ioana Carcea, Ozlem Gunal, Steven W Levison

Abstract

Epidemiologic studies have demonstrated that infections during pregnancy increase the risk of offspring developing Schizophrenia, Autism, Depression and Bipolar Disorder and have implicated interleukin-6 (IL-6) as a causal agent. However, other cytokines have been associated with the developmental origins of psychiatric disorders; therefore, it remains to be established whether elevating IL-6 is sufficient to alter the trajectory of neural development. Furthermore, most rodent studies have manipulated the maternal immune system at mid-gestation, which affects the stem cells and progenitors in both the primary and secondary germinal matrices. Therefore, a question that remains to be addressed is whether elevating IL-6 when the secondary germinal matrices are most active will affect brain development. Here, we have increased IL-6 from postnatal days 3-6 when the secondary germinal matrices are rapidly expanding. Using Nestin-CreERT2 fate mapping we show that this transient increase in IL-6 decreased neurogenesis in the dentate gyrus of the dorsal hippocampus, reduced astrogliogenesis in the amygdala and decreased oligodendrogenesis in the body and splenium of the corpus callosum all by ∼ 50%. Moreover, the IL-6 treatment elicited behavioral changes classically associated with neurodevelopmental disorders. As adults, IL-6 injected male mice lost social preference in the social approach test, spent ∼ 30% less time socially engaging with sexually receptive females and produced ∼ 50% fewer ultrasonic vocalizations during mating. They also engaged ∼ 50% more time in self-grooming behavior and had an increase in inhibitory avoidance. Altogether, these data provide new insights into the biological mechanisms linking perinatal immune activation to complex neurodevelopmental brain disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。