Ablation of ORMDL3 impairs adipose tissue thermogenesis and insulin sensitivity by increasing ceramide generation

ORMDL3 的消融会增加神经酰胺的生成,从而损害脂肪组织的产热作用和胰岛素敏感性

阅读:8
作者:Yu Song, Wenying Zan, Liping Qin, Shuang Han, Lili Ye, Molin Wang, Baichun Jiang, Pan Fang, Qiji Liu, Changshun Shao, Yaoqin Gong, Peishan Li

Conclusion

Our findings suggest that ORMDL3 contributes to the regulation of BAT thermogenesis, WAT browning, and insulin resistance.

Methods

Ormdl3-deficient (Ormdl3-/-) mice were employed to delineate the function of ORMDL3 in brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Glucose and lipid homeostasis in Ormdl3-/- mice fed a HFD were assessed. The lipid composition in adipose tissue was evaluated by mass spectrometry. Primary adipocytes in culture were used to determine the mechanism by which ORMDL3 regulates white adipose browning.

Objective

Genome-wide association studies identified ORMDL3 as an obesity-related gene, and its expression was negatively correlated with body mass index. However, the precise biological roles of ORMDL3 in obesity and lipid metabolism remain uncharacterized. Here, we investigate the function of ORMDL3 in adipose tissue thermogenesis and high fat diet (HFD)-induced insulin resistance.

Results

BAT thermogenesis and WAT browning were significantly impaired in Ormdl3-/- mice upon cold exposure or administration with the β3 adrenergic agonist. In addition, compared to WT mice, Ormdl3-/- mice displayed increased weight gain and insulin resistance in response to HFD. The induction of uncoupling protein 1 (UCP1), a marker of thermogenesis, was attenuated in primary adipocytes derived from Ormdl3-/- mice. Importantly, ceramide levels were elevated in the adipose tissue of Ormdl3-/- mice. In addition, the reduction in thermogenesis and increase in body weight caused by Ormdl3 deficiency could be rescued by inhibiting the production of ceramides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。