Microglia-endothelial cross-talk regulates diabetes-induced retinal vascular dysfunction through remodeling inflammatory microenvironment

小胶质细胞-内皮细胞串扰通过重塑炎症微环境调节糖尿病引起的视网膜血管功能障碍

阅读:4
作者:Shuai Ben, Yan Ma, Yun Bai, Qiuyang Zhang, Ya Zhao, Jiao Xia, Mudi Yao

Abstract

Inflammation-mediated crosstalk between neuroglial cells and endothelial cells (ECs) is a fundamental feature of many vascular diseases. Nevertheless, the landscape of inflammatory processes during diabetes-induced microvascular dysfunction remains elusive. Here, we applied single-cell RNA sequencing to elucidate the transcriptional landscape of diabetic retinopathy (DR). The transcriptome characteristics of microglia and ECs revealed two microglial subpopulations and three EC populations. Exploration of intercellular crosstalk between microglia and ECs showed that diabetes-induced interactions mainly participated in the inflammatory response and vessel development, with colony-stimulating factor 1 (CSF1) and CSF1 receptor (CSF1R) playing important roles in early cell differentiation. Clinically, we found that CSF1/CSF1R crosstalk dysregulation was associated with proliferative DR. Mechanistically, ECs secrete CSF1 and activate CSF1R endocytosis and the CSF1R phosphorylation-mediated MAPK signaling pathway, which elicits the differentiation of microglia and triggers the secretion of inflammatory factors, and subsequently foster angiogenesis by remodeling the inflammatory microenvironment through a positive feedback mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。