Integrin-dependent Akt1 activation regulates PGC-1 expression and fatty acid oxidation

整合素依赖性 Akt1 激活调节 PGC-1 表达和脂肪酸氧化

阅读:8
作者:Craig C Beeson, Gyda C Beeson, Haley Buff, Juanita Eldridge, Aiguo Zhang, Arun Seth, Marina Demcheva, John N Vournakis, Robin C Muise-Helmericks

Background

Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells

Conclusions

Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.

Results

Using a Seahorse Bioanalyzer to measure oxygen consumption in real time, we show that sNAG treatment increases oxygen consumption rates, correlated with an integrin-dependent activation of Akt1. Akt1 activation leads to an increase in the expression of the transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). This is not due to increased mitochondrial biogenesis, but is associated with an increase in the expression of pyruvate dehydrogenase kinase 4 (PDK4), suggesting regulation of fatty acid oxidation. Blockade of fatty acid oxidation with etomoxir, an O-carnitine palmitoyltransferase-1 inhibitor, blocks the sNAG-dependent increased oxygen consumption. (3)H-palmitate uptake experiments indicate a PDK4-dependent increase in fatty acid oxidation, which is required for nanofiber-induced cell motility. Conclusions: Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。