Defective transcription elongation in human cancers imposes targetable proteotoxic vulnerability

人类癌症中转录延长缺陷导致可靶向的蛋白毒性脆弱性

阅读:11
作者:B Muhammad, L G Parks, K Komurov, L M Privette Vinnedge

Abstract

Successful cancer therapy is contingent on identifying cancer-specific aberrant phenotypes and their associated vulnerabilities. We recently reported that a subset of almost every cancer type contains a genome-wide defect in RNA Polymerase II-mediated transcription elongation (TEdef), which impairs the expression of long genes and confers resistance to anti-tumor immune attack. Using a combination of computational analysis and laboratory experiments, we report that tumor cells with TEdef have widespread overexpression of the components of the protein homeostasis machinery (mostly composed of short genes), including protein folding and clearance. Accordingly, TEdef cells were characterized by abnormally high levels of insoluble protein aggregates in the cytoplasm and autophagy influx. We present evidence that TEdef cells exhibit impaired clearance of misfolded protein aggregates through the ubiquitin-proteasome system, and thus rely on autophagy for their degradation. As such, while these cells were highly resistant to proteasome inhibitors, they were acutely sensitive to inhibitors of autophagy in vitro and in vivo. This study reveals a major aberrant phenotype that is observed in ∼15-25% of all cancers and characterizes a unique cellular vulnerability that can be readily exploited in the clinic to improve treatment efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。