Molecular dynamics investigation on the interfacial thermal resistance between annealed pyrolytic graphite and copper

退火热解石墨与铜界面热阻的分子动力学研究

阅读:7
作者:Xinyu Jiang, Xiaoyang Li, Dong Li, Lizheng Su, Tianning Zhang, Bin Chen, Zhi Li

Abstract

Modern highly integrated microelectronic products often face the challenge of internal heat dissipation, leading to a significant decrease in their operational efficiency. Annealed Pyrolytic Graphite (APG), due to its superior thermal conductivity, has garnered attention from researchers. The interface thermal resistance between APG and supporting materials like copper significantly affects heat transfer during APG's operation. Existing studies rarely delve into the influence of factors such as the shape of APG material interfaces on thermal resistance from a microscopic perspective. In this paper, utilizing transient thermo-reflectance method and non-equilibrium molecular dynamics simulations, the interface thermal resistance of the APG-Cu structure was investigated under different conditions. The impact of parameters such as copper thickness, interface micro-surface morphology, and APG thickness on the calculated interface thermal resistance was examined. Simulation results revealed that copper thickness had a minor effect on the interface thermal resistance. This is because the phonon participation ratio remains unaffected by changes in the thickness of the copper layer. The interfacial thermal resistance beneath microscopically cylindrical copper surfaces was considerably lower than that of rectangular copper surfaces. This is because beneath the cylindrical surface, the enlarged interface contact area facilitates enhanced thermal transport between the interfaces. The computed results of the radial distribution function in the paper also indirectly validate this viewpoint. The magnitude of interfacial thermal resistance for different APG layers was influenced by the coupling effect of intermolecular forces and the layered stacking structure of APG. The interfacial thermal resistance under the condition of three layers of APG reaches its minimum value, which is 2.2 × 10-9 (K m2 W-1). Furthermore, from the phonon perspective, it is found that the interfacial thermal resistance with different numbers of APG layers is closely related to the localization or delocalization state of phonons. As the number of APG layers increased, the interface thermal resistance showed a trend of initial decrease followed by an increase, this is because the average phonon participation ratio increases and then decreases with the number of APG layers. The average phonon participation ratio reaches its maximum value of 0.45778 under the condition of three layers of APG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。