Histopathological significance of microRNA-210 expression in acute peripheral ischemia in a murine femoral artery ligation model

小鼠股动脉结扎模型急性外周缺血中microRNA-210表达的组织病理学意义

阅读:5
作者:Yuichi Takai, Satoshi Nishimura, Hitoshi Kandori, Takeshi Watanabe

Abstract

Under hypoxic conditions, microRNA-210 is upregulated and plays multiple physiological roles including in cell growth arrest, stem cell survival, repression of mitochondrial respiration, angiogenesis, and arrest of DNA repair. In this study, we investigated the histopathological expression of microRNA-210 under hypoxic conditions using a femoral artery ligation model established in C57BL/6J mice to determine the pathological significance of microRNA-210. Following femoral artery ligation, ischemia was represented by decreased blood flow compared to the control, in which a sham operation was performed. On histopathology, degeneration/necrosis of the muscle fibers, inflammatory cell infiltration, and regeneration of the muscle fibers were sequentially observed from 3 h to 3 d after ligation of the artery. The degree of these effects was more severe in the area in which type I muscular fibers are dominant. The histological expression of hypoxia-inducible factor 1α, a well-known biomarker of hypoxia, and microRNA-210 was observed in a few necrotic muscle fibers, macrophages, and myoblasts, a distribution consistent with the histopathological lesions, and their signal increased over time. The expression of microRNA-210 in macrophages and myoblasts under ischemia might be indicative of a significant role in the recovery from ischemic lesions. In addition, the in situ hybridization of microRNA-210 could potentially be used for the detection of hypoxia as a histological marker in addition to the immunohistochemistry of hypoxia-inducible factor 1α.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。