MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy

MicroRNA-145 通过加速心肌细胞自噬修复梗死心肌

阅读:5
作者:Kenshi Higashi, Yoshihisa Yamada, Shingo Minatoguchi, Shinya Baba, Masamitsu Iwasa, Hiromitsu Kanamori, Masanori Kawasaki, Kazuhiko Nishigaki, Genzou Takemura, Minami Kumazaki, Yukihiro Akao, Shinya Minatoguchi

Abstract

We investigated whether microRNA-145 (miR-145) has a cardioprotective effect in a rabbit model of myocardial infarction (MI) and in H9c2 rat cardiomyoblasts. Rabbits underwent 30 min of coronary occlusion, followed by 2 days or 2 wk of reperfusion. Control microRNA (control group; 2.5 nmol/kg, n = 10) or miR-145 (miR-145 group, 2.5 nmol/kg, n = 10) encapsulated in liposomes was intravenously administered immediately after the start of reperfusion. H9c2 rat cardiomyoblasts were transfected with miR-145. The MI size was significantly smaller in the miR-145 group than in the control group at 2 days and 2 wk post-MI. miR-145 had improved the cardiac function and remodeling at 2 wk post-MI. These effects were reversed by chloroquine. Western blot analysis showed that miR-145 accelerated the transition of LC3B I to II and downregulated p62/SQSTM1 at 2 days or 2 wk after MI, but not at 4 wk, and activated Akt in the ischemic area at 2 days after MI. miR-145 inhibited the growth of H9c2 cells, accelerated the transition of LC3B I to II, and increased phosphorylated Akt in the H9c2 cells at 2 days after miR-145 transfection. Antagomir-145 significantly abolished the morphological change, the transition of LC3B I to II, and the increased phosphorylated Akt induced by miR-145 in H9c2 cells. We determined fibroblast growth factor receptor substrate 2 mRNA to be a target of miR-145, both in an in vivo model and in H9c2 cells. In conclusion, post-MI treatment with miR-145 protected the heart through the induction of cardiomyocyte autophagy by targeting fibroblast growth factor receptor substrate 2.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。