Competing Endogenous RNA and Coexpression Network Analysis for Identification of Potential Biomarkers and Therapeutics in association with Metastasis Risk and Progression of Prostate Cancer

竞争性内源性 RNA 和共表达网络分析用于识别与前列腺癌转移风险和进展相关的潜在生物标志物和治疗方法

阅读:4
作者:Xiaocong Pang #, Ying Zhao #, Jinhua Wang #, Wan Li, Qian Xiang, Zhuo Zhang, Shiliang Wu, Ailin Liu, Guanhua Du, Yimin Cui

Abstract

Prostate cancer (PCa) is the most frequently diagnosed malignant neoplasm in men. Despite the high incidence, the underlying pathogenic mechanisms of PCa are still largely unknown, which limits the therapeutic options and leads to poor prognosis. Herein, based on the expression profiles from The Cancer Genome Atlas (TCGA) database, we investigated the interactions between long noncoding RNA (lncRNA) and mRNA by constructing a competing endogenous RNA network. Several competing endogenous RNAs could participate in the tumorigenesis of PCa. Six lncRNA signatures were identified as potential candidates associated with stage progression by the Kolmogorov-Smirnov test. In addition, 32 signatures from the coexpression network had potential diagnostic value for PCa lymphatic metastasis using machine learning algorithms. By targeting the coexpression network, the antifungal compound econazole was screened out for PCa treatment. Econazole could induce growth restraint, arrest the cell cycle, lead to apoptosis, inhibit migration, invasion, and adhesion in PC3 and DU145 cell lines, and inhibit the growth of prostate xenografts in nude mice. This systematic characterization of lncRNAs, microRNAs, and mRNAs in the risk of metastasis and progression of PCa will aid in the identification of candidate prognostic biomarkers and potential therapeutic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。