Prematurity blunts protein synthesis in skeletal muscle independently of body weight in neonatal pigs

早产会抑制新生猪骨骼肌的蛋白质合成,且与体重无关

阅读:4
作者:Marko Rudar, Jane K Naberhuis, Agus Suryawan, Hanh V Nguyen, Marta L Fiorotto, Teresa A Davis

Background

Postnatal growth failure in premature infants is associated with reduced lean mass accretion. Prematurity impairs the feeding-induced stimulation of translation initiation and protein synthesis in the skeletal muscle of neonatal pigs. The

Conclusion

A lower capacity of skeletal muscle to respond adequately to feeding may contribute to reduced body weight gain and lean mass accretion in preterm infants. Impact: This study has shown that the feeding-induced increase in protein synthesis of skeletal and cardiac muscle is blunted in neonatal pigs born preterm compared to pigs born at term independently of birth weight. These findings support the notion that preterm birth, and not low birth weight, impairs the capacity of skeletal and cardiac muscle to upregulate mechanistic target of rapamycin-dependent anabolic signaling pathways and protein synthesis in response to the postprandial increase in insulin and amino acids. These observations suggest that a blunted anabolic response to feeding contributes to reduced lean mass accretion and altered body composition in preterm infants.

Methods

Preterm and term pigs that were either fasted or fed were stratified into quartiles according to birth weight to yield preterm and term groups of similar body weight; first and second quartiles of preterm pigs and third and fourth quartiles of term pigs were compared (preterm-fasted, n = 23; preterm-fed, n = 25; term-fasted, n = 21; term-fed, n = 21). Protein synthesis rates and mechanistic target of rapamycin complex 1 (mTORC1) activation in skeletal muscle were determined.

Results

Relative body weight gain was lower in preterm compared to term pigs. Prematurity attenuated the feeding-induced increase in mTORC1 activation in longissimus dorsi and gastrocnemius muscles (P < 0.05). Protein synthesis in gastrocnemius (P < 0.01), but not in longissimus dorsi muscle, was blunted by preterm birth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。