Identification of hub genes associated with the pathogenesis of diffuse large B-cell lymphoma subtype one characterized by host response via integrated bioinformatic analyses

通过整合生物信息学分析鉴定与以宿主反应为特征的弥漫大 B 细胞淋巴瘤亚型 1 发病机制相关的中心基因

阅读:4
作者:Lingna Zhou, Liya Ding, Yuqi Gong, Jing Zhao, Gong Xin, Ren Zhou, Wei Zhang

Background

Host response diffuse large B-cell lymphoma (HR DLBCL) shares features of histologically defined T-cell/histiocyte-rich B-cell lymphoma, including fewer genetic abnormalities, frequent splenic and bone marrow involvement, and younger age at presentation. HR DLBCL is inherently less responsive to the standard treatment for DLBCL. Moreover, the mechanism of infiltration of HR DLBCL with preexisting abundant T-cells and dendritic cells is unknown, and their associated underlying immune responses incompletely defined. Here, hub genes and pathogenesis associated with HR DLBCL were explored to reveal molecular mechanisms and treatment targets.

Methods

Differentially expressed genes were identified in three datasets (GSE25638, GSE44337, GSE56315). The expression profile of the genes in the GSE53786 dataset was used to constructed a co-expression network. Protein-protein interactions analysis in the modules of interest identified candidate hub genes. Then screening of real hub genes was carried out by survival analysis within the GSE53786 and GSE10846 datasets. Expression of hub genes was validated in the Gene expression profiling interactive analysis, Oncomine databases and human tissue specimens. Functional enrichment analysis and Gene set enrichment analysis were utilized to investigate the potential mechanisms. Tumor Immune Estimation Resource and The Cancer Genome Atlas were used to mine the association of the hub gene with tumor immunity, potential upstream regulators were predicted using bioinformatics tools.

Results

A total of 274 common differentially expressed genes were identified. Within the key module, we identified CXCL10 as a real hub gene. The validation of upregulated expression level of CXCL10 was consistent with our study. CXCL10 might have a regulatory effect on tumor immunity. The predicted miRNA (hsa-mir-6849-3p) and transcription factor (IRF9) might regulate gene expression in the hub module.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。