Linc-ROR promotes esophageal squamous cell carcinoma progression through the derepression of SOX9

Linc-ROR 通过解除 SOX9 的抑制来促进食管鳞状细胞癌进展

阅读:11
作者:Lianghai Wang, Xiaodan Yu, Zhiyu Zhang, Lijuan Pang, Jiang Xu, Jinfang Jiang, Weihua Liang, Yuhang Chai, Jun Hou, Feng Li

Background

Novel therapies tailored to the molecular composition of esophageal squamous cell carcinoma (ESCC) are needed to improve patient survival. We investigated the regulatory network of long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) and sex-determining region Y-box 9 (SOX9), and their therapeutic relevance in ESCC.

Conclusions

Our results demonstrate that the linc-ROR-miRNA-SOX9 regulatory network may represent a novel therapeutic target for ESCC.

Methods

Linc-ROR and SOX9 expression were examined in ESCC specimens, cell lines, and cultured tumorspheres. We investigated the effects of linc-ROR on SOX9 expression and malignant phenotypes by CCK8, colony formation, Transwell, and sphere-forming assay. The linc-ROR/SOX9 interaction mediated by multiple microRNAs (miRNAs) was confirmed by bioinformatic analysis, luciferase assay, and RNA-binding protein immunoprecipitation, transient overexpression or antagonizing endogenous candidate miRNAs. The effect of linc-ROR depletion on tumor growth was assessed by xenograft assay.

Results

A positive correlation between linc-ROR and SOX9 expression was found in clinical ESCC specimens (r = 0.562, P = 0.036), cell lines, and tumorspheres. Silencing of linc-ROR significantly inhibited cell proliferation, motility, chemoresistance, and self-renewal capacity. Mechanistically, linc-ROR modulating the derepression of SOX9 by directly sponging multiple miRNAs including miR-15b, miR-33a, miR-129, miR-145, and miR-206. Antagonizing these miRNAs counteracted with linc-ROR silencing, whereas the repression of SOX9 abrogated malignant phenotypes induced by the cocktail of miRNA inhibitors. Moreover, linc-ROR disruption was sufficient to attenuate tumor growth and cancer stem cell marker expression in vivo. Conclusions: Our results demonstrate that the linc-ROR-miRNA-SOX9 regulatory network may represent a novel therapeutic target for ESCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。