Long noncoding RNA KCNQ1 opposite strand/antisense transcript 1 promotes osteosarcoma progression through miR-154-3p/KLF12

长链非编码 RNA KCNQ1 相反链/反义转录本 1 通过 miR-154-3p/KLF12 促进骨肉瘤进展

阅读:12
作者:Qibo Zhang, Huachang Jiang, Youming Jin, Ning Zhang, Zhihua Mu, Yan Guo, Haitao Li

Conclusion

In conclusion, our research explains the mechanism of KCNQ1OT1 in OS progression, which could serve as a new therapeutic target.

Methods

Cell viability and proliferation were detected using the CCK-8 assay and the 5-Ethynyl-2'-deoxyuridine (EdU) assay. Wound-healing assays, transwell assay and flow cytometry were used to identify cell migration, invasion, and apoptosis, respectively. The relationship among KCNQ1OT1, miR-154-3p, and KLF12 was verified by luciferase reporter assay and restricting protein immunoprecipitation (RIP) assay. Xenograft models were established to confirm the function of KCNQ1OT1 in vivo.

Objective

Osteosarcoma (OS) is a common bone cancer that usually influences children. Metastasis and recurrence are the main reasons for the poor prognosis. In this study, we investigated the functions and mechanisms of KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in OS.

Results

The expression of KCNQ1OT1 was higher in OS than in non-tumor tissues and cells. Knockdown of KCNQ1OT1 could reduce OS cell proliferation, migration, and invasion and promoted cell death. Mechanistically, KCNQ1OT1 contributed to OS formation by acting as a competitive endogenous RNA (ceRNA) and influencing miR-154-3p expression. Furthermore, we confirmed that miR-154-3p affected KLF12 expression through binding the 3'UTR region. Finally, rescue experiments determined that KCNQ1OT1 exerted major roles in OS through the miR-154-3p/KLF12 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。