Diastereoselective synthesis of cyclic tetrapeptide pseudoxylallemycin A illuminates the impact of base during macrolactamization

环状四肽假木聚糖霉素 A 的非对映选择性合成阐明了大环内酰胺化过程中碱的影响

阅读:10
作者:Vincent M Fumo, R Charlie Roberts, Jieyu Zhang, Matthew C O'Reilly

Abstract

Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。