Ulinastatin alleviates cerebral ischemia-reperfusion injury in rats by activating the Nrf-2/HO-1 signaling pathway

乌司他丁通过激活Nrf-2/HO-1信号通路减轻大鼠脑缺血再灌注损伤

阅读:5
作者:Lei Cui, Wei Cao, Yanmin Xia, Xiaofang Li

Background

Ulinastatin, a urinary trypsin inhibitor, is one of the widely used auxiliary drugs in the rescue of acute circulatory failure. This study aims to explore the protective mechanisms of ulinastatin on cerebral ischemia-reperfusion (I/R) injury.

Conclusions

Ulinastatin protected against inflammation and oxidative stress in cerebral I/R injuries via activation of the Nrf-2/HO-1 signaling pathway.

Methods

A cerebral MCAO was established with middle cerebral artery occlusion (MCAO) in Sprague Dawley (SD) rats. Western blotting was employed to show protein expression. Oxidative stress markers [reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH)] and inflammatory cytokines (IL-6, IL-1β, and IL-18) were analyzed to show oxidative stress and inflammation. Hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and triphenyltetrazolium chloride (TTC) staining were applied to show brain injury.

Results

HE, TUNEL and TTC staining indicated that ulinastatin significantly ameliorated cerebral I/R injury and reduced apoptotic cells in the MCAO brain tissue. Ulinastatin also reduced the MCAO-induced expression of intercellular adhesion molecule 1(ICAM-1)/caspase-3. Additionally, the highly expressed ROS, MDA and inflammatory cytokines (IL-6, IL-1β and IL-18) were significantly suppressed, and the inhibited SOD and GSH were recovered with ulinastatin treatment. Consequently, the expression of nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) (which was significantly inhibited by MCAO) was re-activated by ulinastatin and/or TBHQ (an Nrf-2 activator), and treatment with ML-385 (an Nrf-2 inhibitor) blocked the inhibition of apoptosis, inflammation, and oxidative stress by ulinastatin. Our results indicate that the Nrf-2/HO-1 signaling pathway may be involved in the pharmacological mechanism of ulinastatin in cerebral I/R injury. Conclusions: Ulinastatin protected against inflammation and oxidative stress in cerebral I/R injuries via activation of the Nrf-2/HO-1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。