Androgen receptor activation reduces the endothelial cell proliferation through activating the cSrc/AKT/p38/ERK/NFκB-mediated pathway

雄激素受体激活通过激活 cSrc/AKT/p38/ERK/NFκB 介导的通路减少内皮细胞增殖

阅读:5
作者:Yen-Nien Huo, Shauh-Der Yeh, Wen-Sen Lee

Abstract

The effect of androgen on angiogenesis has been documented. However, its underlying molecular mechanisms have not been well illustrated. Here, we show that treatment with an androgen receptor (AR) agonist, metribolone (R1881; 0.05-5 nM), or dihydrotestosterone (DHT; 0.5-2 nM), concentration- and time-dependently inhibited proliferation in human umbilical venous endothelial cells (HUVEC). This inhibitory effect was confirmed in human microvascular endothelial cells (HMEC-1). Flow cytometric analysis demonstrated that R1881 induced G0/G1 phase cell cycle arrest in HUVEC. Blockade of the AR activity by pre-treatment with an AR antagonist, hydroxyflutamide (HF), or knockdown of AR expression using the shRNA technique abolished the R1881-induced HUVEC proliferation inhibition, suggesting that AR activation can inhibit endothelial cell proliferation. We further investigated the signaling pathway contributing to the proliferation inhibition induced by AR activation. Our data suggest that R1881 reduced the proliferation rate of HUVEC through activating the AR/cSrc/AKT/p38/ERK/NFκB pathway, subsequently up-regulating p53 expression, which in turn increased the levels of p21 and p27 protein, hence decreasing the activities of cyclin-dependent kinase 2 (CDK2) and CDK4, and finally reduced the cell proliferation rate. An extra-nuclear pathway involved in the proliferation inhibition induced by AR activation in vascular endothelial cells was confirmed by showing that membrane-impermeable testosterone-bovine serum albumin (BSA) treatment significantly increased the levels of p53, p27 and p21 protein and reduced cell proliferation. These data highlight the underlying molecular mechanisms by which AR activation induced proliferation inhibition in vascular endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。