Fangchinoline attenuates cardiac dysfunction in rats with endotoxemia via the inhibition of ERK1/2 and NF-κB p65 phosphorylation

防己诺林通过抑制 ERK1/2 和 NF-κB p65 磷酸化减轻内毒血症大鼠的心脏功能障碍

阅读:4
作者:Hongwei Chen, Zonghua Shi, Yongsheng Xing, Xinwei Li, Fengzhou Fu

Background

Cardiac dysfunction is a complication commonly encountered by patients with endotoxemia. Fangchinoline (Fan) is a natural bisbenzylisoquinoline alkaloid. This study aimed to investigate the cardioprotective effect of Fan against lipopolysaccharide (LPS)-induced acute cardiac dysfunction.

Conclusions

Fan deficiency alleviated LPS-induced endotoxemia in rats. Therefore, Fan may be a new therapeutic approach for the treatment of cardiac dysfunction.

Methods

Rats were administered with Baicalin (100 mg/kg) and Fan (30 or 60 mg/kg) via intraperitoneal injection (i.p.) for 3 days, followed by LPS treatment (10 mg/kg, i.p.). The rats were randomly grouped (n=10): the control group, the LPS group, the LPS + Baicalin group, the LPS + Fan groups. Echocardiography and hematoxylin and eosin (HE) staining were performed to detect cardiac dysfunction. Cardiac function were also determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), ELISA, and western blot, respectively. The protective mechanisms of Fan were analyzed by western blot and qRT-PCR.

Results

LPS induced the depression of cardiac function, myocardial inflammation, and apoptosis. These changes were associated with decreased GRP78 and GADD34, increased C/EBP-homologous protein (CHOP) and cleaved caspase-12. Fan significantly reduced the release of inflammatory cytokines such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, and IL-6. Furthermore, Fan treatment increased superoxide dismutase (SOD) and decreased malondialdehyde (MDA. Notably, Fan inhibited myocardial apoptosis following ER stress in the LPS-induced rat model and stimulated phosphorylation activation of ERK1/2 and NF-κB p65 proteins. Conclusions: Fan deficiency alleviated LPS-induced endotoxemia in rats. Therefore, Fan may be a new therapeutic approach for the treatment of cardiac dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。