Cancer invasion regulates vascular complexity in a three-dimensional biomimetic model

癌症侵袭在三维仿生模型中调节血管的复杂性

阅读:6
作者:Judith Pape, Tarig Magdeldin, Morium Ali, Claire Walsh, Mark Lythgoe, Mark Emberton, Umber Cheema

Discussion

This work interrogates to the gene and protein level how cancer cells influence the development of a complex stroma, which shows to be directly influenced by the invasive capability of the cancer.

Methods

Using a compartmentalised, biomimetic, 3D cancer model, comprising a central cancer mass surrounded by a vascularised stroma, we have tested the invasive capability of colorectal cancer cells.

Results

We show histological analysis of dense collagen I/laminin scaffolds, forming necrotic cores with cellular debris. Furthermore, cancer cells within this 3D matrix form spheroids, which is corroborated with high EpCAM expression. We validate the invasive growth of cancer cells into the stroma through quantitative image analysis and upregulation of known invasive gene markers, including metastasis associated in colon cancer 1, matrix metalloproteinase 7 and heparinase. Tumouroids containing highly invasive HCT116 cancer masses form less complex and less branched vascular networks, recapitulating 'leaky' vasculature associated with highly metastatic cancers. Angiogenic factors regulating this were vascular endothelial growth factor A and hepatocyte growth factor active protein. Where vascular networks were formed with less invasive cancer masses (HT29), higher expression of vascular endothelial cadherin active protein resulted in more complex and branched networks. To eliminate the cell-cell interaction between the cancer mass and stroma, we developed a three-compartment model containing an acellular ring to test the chemoattractant pull from the cancer mass. This resulted in migration of endothelial networks through the acellular ring accompanied by alignment of vascular networks at the cancer/stroma boundary.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。