Inhibition of formyl peptide receptor 1 activity suppresses tumorigenicity in vivo and attenuates the invasion and migration of lung adenocarcinoma cells under hypoxic conditions in vitro

抑制甲酰肽受体 1 活性可抑制体内致瘤性并减弱体外缺氧条件下肺腺癌细胞的侵袭和迁移

阅读:8
作者:Bo Huang, Hongrong Guo, Jie Ding, Jun Li, Hongjuan Wang, Jianqun Xu, Quan Zheng, Lijun Zhou, Qin Dai

Background

Tumor hypoxia has been widely reported to promote metastasis. However, the molecular mechanisms underlying metastasis-associated hypoxia remain unclear. Formyl peptide receptor 1 (FPR1) has been reported to be highly expressed under hypoxic conditions. This study aimed to explore the role of FPR1 in tumor cells under hypoxic conditions.

Conclusions

Our results suggest that FPR1 could be a therapeutic target for suppressing the invasion and tumorigenicity of lung adenocarcinoma cells.

Methods

The expressions of FPR1 and hypoxia-inducible factor 1α (HIF-1α) in A549 cells under hypoxic conditions were detected using western blot. The expression of FPR1 in A549 cells under hypoxic conditions was suppressed using the FPR1 antagonist Boc2. Wound-healing and Transwell assays were performed to investigate the migration and invasion of cells. Furthermore, the tumorigenicity of A549 cells was evaluated by constructing a hypoxic mouse model of lung adenocarcinoma. The expression levels of HIF-1α and FPR1 in tumors were measured by real-time polymerase chain reaction (PCR) and western blot.

Results

The expression levels of FPR1 and HIF-1α increased in a time-dependent manner after exposure to hypoxic conditions. Wound-healing and Transwell assays showed that hypoxia promoted the migration and invasion abilities of A549 cells, whereas downregulation of FPR1 blocked the effects of hypoxia on A549 cells. Our in vivo results demonstrated that the tumor volumes and weights of mice exposed to hypoxic conditions were significantly higher than those of untreated mice. Furthermore, the downregulation of FPR1 blocked the effects of hypoxia in the mice. Meanwhile, the expressions of HIF-1α and FPR1 at the protein and mRNA levels were increased after hypoxic exposure, whereas FPR1 antagonist Boc2 suppressed the effect of hypoxia on the expression of FPR1. Conclusions: Our results suggest that FPR1 could be a therapeutic target for suppressing the invasion and tumorigenicity of lung adenocarcinoma cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。