Calcineurin is required for TRPV1-induced long-term depression of hippocampal interneurons

钙调神经磷酸酶是 TRPV1 诱发的海马中间神经元长期抑制所必需的

阅读:6
作者:Tyron Jensen, Jeffrey G Edwards

Abstract

Transient receptor potential vanilloid 1 (TRPV1) mediates a novel form of presynaptic long-term depression (LTD) in hippocampal interneurons. To date, while TRPV1 is currently being heavily studied in the PNS for its anti-nociceptive and anti-inflammatory properties, much less is known regarding TRPV1 signaling and function in the CNS, including the mechanism mediating hippocampal interneuron LTD. Here we performed whole-cell voltage clamp electrophysiology experiments on CA1 hippocampal interneurons from Sprague-Dawley male rats to identify this signaling mechanism. Because calcineurin is linked to multiple synaptic plasticity types, we investigated whether TRPV1 activates presynaptic calcineurin, which in turn induces LTD. To do so we employed calcineurin inhibitors cyclosporin A or FK-506. To determine the location of the calcineurin involved we either bath applied calcineurin antagonists, blocking calcineurin activity ubiquitously in the slice, presynaptically and postsynaptically, or applied antagonists to the internal solution to block calcineurin postsynaptically. Both calcineurin antagonists applied to the bath blocked TRPV1-dependent LTD, indicating calcineurin involvement in LTD. Because calcineurin antagonist applied to the internal solution did not block TRPV1-LTD, it suggests presynaptic calcineurin is required for LTD. Finally, because high frequency stimulus used to induce LTD could potentially activate receptors besides TRPV1, we confirmed that bath, but not intracellularly applied cyclosporin A, also blocked TRPV1 agonist-induced depression of CA1 interneurons. In conclusion, these data illustrate that presynaptic calcineurin activity is required for both TRPV1-induced LTD and TRPV1 agonist-induced depression. This finding is the first to demonstrate the TRPV1-induced signaling mechanism in CA1 hippocampus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。