Zinc Single Atom Confinement Effects on Catalysis in 1T-Phase Molybdenum Disulfide

锌单原子限制效应对 1T 相二硫化钼催化性能的影响

阅读:8
作者:Sabrina M Younan, Zhida Li, XingXu Yan, Dong He, Wenhui Hu, Nino Demetrashvili, Gabriella Trulson, Audrey Washington, Xiangheng Xiao, Xiaoqing Pan, Jier Huang, Jing Gu

Abstract

Active sites are atomic sites within catalysts that drive reactions and are essential for catalysis. Spatially confining guest metals within active site microenvironments has been predicted to improve catalytic activity by altering the electronic states of active sites. Using the hydrogen evolution reaction (HER) as a model reaction, we show that intercalating zinc single atoms between layers of 1T-MoS2 (Zn SAs/1T-MoS2) enhances HER performance by decreasing the overpotential, charge transfer resistance, and kinetic barrier. The confined Zn atoms tetrahedrally coordinate to basal sulfur (S) atoms and expand the interlayer spacing of 1T-MoS2 by ∼3.4%. Under confinement, the Zn SAs donate electrons to coordinated S atoms, which lowers the free energy barrier of H* adsorption-desorption and enhances HER kinetics. In this work, which is applicable to all types of catalytic reactions and layered materials, HER performance is enhanced by controlling the coordination geometry and electronic states of transition metals confined within active-site microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。