miR-124 promotes proliferation and differentiation of neuronal stem cells through inactivating Notch pathway

miR-124通过抑制Notch通路促进神经干细胞增殖分化

阅读:5
作者:Shujie Jiao, Yaling Liu, Yaobing Yao, Junfang Teng

Background

Neural stem cells (NSCs) are able to differentiate into neurons and astroglia. miRNAs have been demonstrated to be involved in NSC self-renewal, proliferation and differentiation. However, the exact role of miR-124 in the development of NSCs and its underlying mechanism remain to be explored.

Conclusion

miR-124 promoted proliferation and differentiation of NSCs through inactivating Notch pathway.

Methods

Primary NSCs were isolated from embryos of Wistar rats. Immunocytochemistry was used to stain purified NSCs. miR-124, Delta-like 4 (DLL4), ki-67, Nestin, β-tubulin III, glial fibrillary acidic protein (GFAP), HES1, HEY2, and cyclin D1 (CCND1) expressions were detected by qRT-PCR and western blot. The interaction between miR-124 and DLL4 was confirmed by luciferase reporter assay. Cell proliferation was assessed by MTT assay.

Results

NSCs could self-proliferate and differentiate into neurons and astrocyte. miR-124 was up-regulated and DLL4 was down-regulated during NSC differentiation. DLL4 was identified as a target of miR-124 in NSCs. Ectopic expression of miR-124 or knockdown of DLL4 promoted the proliferation and the formation of NSCs to neurospheres. Moreover, miR-124 overexpression or DLL4 down-regulation improved β-tubulin III expression but decreased GFAP expression in NSCs. Furthermore, enforced expression of DLL4 partially reversed the effects of miR-124 on NSCs proliferation and differentiation. Elevated expression of miR-124 suppressed the expressions of HES1, HEY2, and CCND1 in NSCs, while these effects were attenuated following the enhancement of DLL4 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。