Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer

BET 蛋白水解靶向嵌合 (PROTAC) 化合物在三阴性乳腺癌中的活性

阅读:5
作者:María Del Mar Noblejas-López, Cristina Nieto-Jimenez, Miguel Burgos, Mónica Gómez-Juárez, Juan Carlos Montero, Azucena Esparís-Ogando, Atanasio Pandiella, Eva M Galán-Moya, Alberto Ocaña

Background

Triple negative breast cancer (TNBC) is an incurable disease where novel therapeutic strategies are needed. Proteolysis targeting chimeric (PROTAC) are novel compounds that promote protein degradation by binding to an ubiquitin ligase. In this work, we explored the antitumoral activity of two novel BET-PROTACs, MZ1 and ARV-825, in TNBC, ovarian cancer and in a BET inhibitor resistant model.

Conclusions

Using both in vitro and in vivo approaches, we describe the profound activity of BET-PROTACs in parental and BETi-resistant TNBC models. This data provides options for further clinical development of these agents in TNBC.

Methods

OVCAR3, SKOV3, BT549, MDA-MB-231 cell lines and the JQ1 resistant cell line MDA-MB-231R were evaluated. MTTs, colony-forming assay, three-dimensional cultures in matrigel, flow cytometry, and western blots were performed to explore the anti-proliferative effect and biochemical mechanism of action of MZ1 and ARV-825. In vivo studies included BALB/c nu/nu mice engrafted with MDA-MB-231R cells.

Results

The BET-PROTACs MZ1 and ARV-825 efficiently downregulated the protein expression levels of the BET protein BRD4, in MDA-MB-231 and MDA-MB-231R. MZ1 and ARV-825 also showed an antiproliferative effect on sensitive and resistant cells. This effect was corroborated in other triple negative (BT549) and ovarian cancer (SKOV3, OVCAR3) cell lines. MZ1 provoked G2/M arrest in MDA-MB-231. In addition, a profound effect on caspase-dependent apoptosis was observed in both sensitive and resistant cells. No synergistic activity was observed when it was combined with docetaxel, cisplatin or olaparib. Finally, in vivo administration of MZ1 rescued tumor growth in a JQ1-resistant xenograft model, reducing the expression levels of BRD4. Conclusions: Using both in vitro and in vivo approaches, we describe the profound activity of BET-PROTACs in parental and BETi-resistant TNBC models. This data provides options for further clinical development of these agents in TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。