Lack of mitochondrial complex I assembly factor NDUFAF2 results in a distinctive infantile-onset brainstem neurodegenerative disease with early lethality

缺乏线粒体复合物 I 组装因子 NDUFAF2 会导致一种独特的婴儿期发病的脑干神经退行性疾病,并具有早期致死性

阅读:12
作者:Firas Abu Hanna, Yoav Zehavi, Eran Cohen-Barak, Morad Khayat, Nasim Warwar, Roni Shreter, Richard J Rodenburg, Ronen Spiegel

Background

Congenital disorders of the mitochondrial respiratory chain are a heterogeneous group of inborn errors of metabolism. Among them, NADH:ubiquinone oxidoreductase (complex I, CI) deficiency is the most common. Biallelic pathogenic variants in NDUFAF2, encoding the nuclear assembly CI factor NDUFAF2, were initially reported to cause progressive encephalopathy beginning in infancy. Since the initial report in 2005, less than a dozen patients with NDUFAF2-related disease have been reported.

Conclusions

Biallelic loss-of-function mutations in NDUFAF2 result in a distinctive phenotype in the spectrum of Leigh syndrome with clinical and neuroradiological features that are primarily attributed to progressive brainstem damage.

Methods

Clinical, biochemical, and neuroradiological features of four new patients residing in Northern Israel were collected during 2016-2022 at Emek Medical Center. Enzymatic activities of the five respiratory-chain complexes were determined in isolated fibroblast mitochondria by spectrophotometric methods. Western blot analyses were conducted with anti-human NDUFAF2 antibody; antibody against the mitochondrial marker VDAC1 was used as a loading control. Genetic studies were performed by chromosome microarray analysis using Affymetrix CytoScan 750 K arrays.

Results

All four patients presented with infantile-onset growth retardation, ophthalmological impairments with nystagmus, strabismus (starting between 5 and 9 months), and further progressed to life-threatening episodes of apnea usually triggered by trivial febrile illnesses (between 10 and 18 months) with gradual loss of acquired developmental milestones (3 of 4 patients). Serial magnetic-resonance imaging studies in two of the four patients showed a progressive pattern of abnormal T2-weighted hyperintense signals involving primarily the brainstem, the upper cervical cord, and later, the basal ganglia and thalami. Magnetic-resonance spectroscopy in one patient showed an increased lactate peak. Disease progression was marked by ventilatory dependency and early lethality. 3 of the 4 patients tested, harbored a homozygous 142-kb partial interstitial deletion that omits exons 2-4 of NDUFAF2. Mitochondrial CI activity was significantly decreased in the only patient tested. Western blot analysis disclosed the absence of NDUFAF2 protein compared to normal controls. In addition, we reviewed all 10 previously reported NDUFAF2-deficient cases to better characterize the disease. Conclusions: Biallelic loss-of-function mutations in NDUFAF2 result in a distinctive phenotype in the spectrum of Leigh syndrome with clinical and neuroradiological features that are primarily attributed to progressive brainstem damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。