Microrna-139-5p inhibits epithelial-mesenchymal transition and fibrosis in post-menopausal women with interstitial cystitis by targeting LPAR4 via the PI3K/Akt signaling pathway

Microrna-139-5p 通过 PI3K/Akt 信号通路靶向 LPAR4 抑制绝经后女性间质性膀胱炎的上皮-间质转化和纤维化

阅读:6
作者:Chen Jiang, Zhen Tong, Wei-Lin Fang, Qi-Bo Fu, Yin-Jun Gu, Ting-Ting Lv, Dong-Ming Liu, Wei Xue, Jian-Wei Lv

Abstract

The study explores whether miR-139-5p targeting LPAR4 affects epithelial-mesenchymal transition (EMT) and fibrosis in post-menopausal women with interstitial cystitis (IC) via the PI3K/Akt signaling pathway. Bladder tissues of IC and normal bladder tissues were collected. The pathology of bladder tissues was observed by HE, Masson and Picrosirius red staining. LPAR4 positive expression rate were determined by IHC. ELISA was performed to detect the levels of IL-6, IL-8, IL-10, and TNF-α. Rat IC models were randomized into seven different groups. miR-139-5p, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, P13K, Akt, E-cadherin, N-cadherin, Vimentin, TGF-β1, and CTGF expression were determined by RT-qPCR and Western blotting. Dual luciferase reporter gene assay verified that LPAR4 is a target gene of miR-139-5p. Fibrosis was a pathological manifestation of IC. The IC group showed higher LPAR4, PI3K, Akt, p-PI3K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression but lower miR-139-5p and E-cadherin expression than the normal group. The levels of IL-6, IL-8, IL-10, and TNF-α expression decreased while HB-EGF increased in the IC group in comparison of the normal group. Compared with the blank and NC groups, E-cadherin expression was increased in the miR-139-5p mimic and siRNA-LPAR4 groups, while LPAR4, PI3K, Akt, p-P13K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression were decreased. An opposite trend was found in the miR-139-5p inhibitor group. The miR-139-5p decreased in the miR-139-5p inhibitor + siRNA-LPAR4 and miR-139-5p inhibitor + wortmannin groups. Conclusively, miR-139-5p targeting LPAR4 inhibits EMT and fibrosis in post-menopausal IC women through the PI3K/Akt signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。