Deconvolution of images from 3D printed cells in layers on a chip

对芯片上 3D 打印细胞层的图像进行反卷积

阅读:10
作者:Sean Yu, Pranav Joshi, Yi Ju Park, Kyeong-Nam Yu, Moo-Yeal Lee

Abstract

Layer-by-layer cell printing is useful in mimicking layered tissue structures inside the human body and has great potential for being a promising tool in the field of tissue engineering, regenerative medicine, and drug discovery. However, imaging human cells cultured in multiple hydrogel layers in 3D-printed tissue constructs is challenging as the cells are not in a single focal plane. Although confocal microscopy could be a potential solution for this issue, it compromises the throughput which is a key factor in rapidly screening drug efficacy and toxicity in pharmaceutical industries. With epifluorescence microscopy, the throughput can be maintained at a cost of blurred cell images from printed tissue constructs. To rapidly acquire in-focus cell images from bioprinted tissues using an epifluorescence microscope, we created two layers of Hep3B human hepatoma cells by printing green and red fluorescently labeled Hep3B cells encapsulated in two alginate layers in a microwell chip. In-focus fluorescent cell images were obtained in high throughput using an automated epifluorescence microscopy coupled with image analysis algorithms, including three deconvolution methods in combination with three kernel estimation methods, generating a total of nine deconvolution paths. As a result, a combination of Inter-Level Intra-Level Deconvolution (ILILD) algorithm and Richardson-Lucy (RL) kernel estimation proved to be highly useful in bringing out-of-focus cell images into focus, thus rapidly yielding more sensitive and accurate fluorescence reading from the cells in different layers. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:445-454, 2018.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。